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The problem of guidance onto a convex target set of a system with slack is 
analyzed on the assumption that the realization of controls of the first player 
is hindered by integral constraints. Sufficient conditions of the problem solva- 
bility are formulated and an example is presented. This paper is related to 

Cl-44j. 

1. Let us consider a controlled system described by the following vector differential 
equation: 

II 6 0 II 

dx 
- = A(t)x+C(u)u, dt (1.1) 

II sin v cos v II 

Here x is the n+limensional phase vector of the system, u is two-dimensional control 
vector of the first player and v is the control of the second player. The realizations of 
the player controls are restricted by the conditions 

su 0 u[z] adz\<pa[t], v[tlE[--a, +a1 

for my t E Ita, 61, ‘(a < n/2) . 
The symbol 11 l 1 denotes the norm in the corresponding Euclidean space, p Lt] are 

the constraints imposed on the resources of the control of the first player, ivld 6 denotes 
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a fixed instant of time, 
The variation of the constraint p ftl is determined by the amount of resource used up 

in the course of the game, i, e. 
#+A 

Equation (I; 2) has an associated differential equation 

holds for any t, A and d It E [to, 61, 0 .<-A < 6 - t, 11 t I/ = f), where xjk IS; 

~1. is an element of the fundamental matrix X \8; d of solutions of the equation 
dxldz = d (7)x. We note that the inequality (1.4) implies that the system (1.1) is fully 
controllable in U. 

We define a bounded closed and convex target set M in the space of vectors x. The 
game takes place within a given interval of time It,, 31. The payoff of the game is 
determined by the equation y Ix [Sll = p [t [+I, Ml, where p Ix iSI, Ml denotes 
the distance between the final state x f@l of the system (1.1) and the set .M in the 
Euclidean metric. The vector {t, z} = {t, 5, p2} is understood to define the position 
of the game, and we shall consider the motion z [tl in the space Rn+l of vectors z = 

{X1P”I. 
Let the initial position {to, 5, t.Lo’} of the game be fixed. The aim of the first player 

is to attain the smallest pc&bie payoff of the game which starts from the position (to, 
x,,, pLo2}. The second player tries to prevent the first player from achieving his aim. 
We assume that at any instant of time t each player knows the exact value of the posi. 
tion {t, 5, p”} of the game ; neither player knows the future positions, nor the location 
of thr opponent. 

Let us now compare the system of equations (1. l), (1.2) and initial conditions 5 I t,l 
and p2 f to] , with the system of differential equations (1, l), (1.3) written in the form 
of a vector differential equation as follows: 

dzldt = f (t, z, u, v) (1.5) 

Here the symbol f (6 z. U. V) denotes the right-hand side of the system (1, I), (1.3). 

2, We shall solve the problem from the viewpoint of the first player, using the follow- 
ing additional definitions. 

Definition 1. We shall call the function U = u (t, z), the admissible strategy 
of the first player. This strategy places each position {t, z} in correspondence with some 
closed convex set U (t, z) (U (t, z) c R2), which is upper semicontinuous relative 
to inclusion over the set t, z , The strategy is also such, that for any closed region 
D C Q and for every point { t, z) belonging to D there exists a summable function 
B (r) (z CG It, 6)) which satisfies at the points (7, z’} of D the condition: if ZL E 
U (z, z’), then 11 u II”< B (T). Here 
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and L is a fixed sufficiently large positive number. 

Let us set U (t, 2) = (0) for jr < 0. 
Definition 2. We define, as a motion generated by an admissible strategy u = 

U (t, z) on the interval It,, tJ and emerging from the position {t,, za}, any abso- 

lutely continuous vector function z It] = z [t; t,, z,,; Ul which satisfies the initial 
condition z [toI = zo as the equation 

dz [tlldt = f (t, z ItI, u [tl, u It]) 
z.! ItI E u (t, z ItI), v[tl E [-a, +a1 

for almost every t E Ito, t,l (to < t, < 6); where v ItI is a function measurable on 
[to, 61 sattifying the inclusion defined above. 

The existence of these motions follows from the results of [5]. 

The motion z [t] = z [t; t,,, zo; Ul is defined on any interval [to, t,l (t, < 6), 
therefore it can be extended continuously to the instant t = 6. This defines the mo- 

tions z ItI = z [t; to, z,; Ul on the interval It,, 61. 
Let us introduce the functional 

pv* Ito, zo; 61 = max p Ix 161; Ml 
z[a]=r[a; to, 20; L] 

({z Ml, p2 ml} = z 161) 

We formalize the problem of guidance stated in Sect. 1, in the following manner. 
Problem. From amongst the admissible strategies U (t, z) we require to find the 

optimal minimax strategy U” (t, z) satisfying the relation 

min”po* [to, z,; 61 = puo* [to, zo; 91 

We shall construct the strategy U“ (i!, z) using an auxiliary program. Below we define 

the elements of this program. 

We define, as the admissible countercontrol I’ (t, U) of the second player, a single- 

valued Bore1 function on the set (6 U) which, for each pair (t, U) E [to, 61 X R2 
has a corresponding value V (t, U) E [--a, +a], Let 

{t*, z*> = {t*y x*1 p*21 = {t*, 5 It,], p2 [t*l}(t* E [to, 61) 

be some position of the game. We define, as a motion generated by an admissible 
countercontrol T’ (t, u) of the second player, the vector function 2 [ tl = 2 it; t,, z*; 
V] (t E [t,, 61) which is absolutely continuous on [t*, 191 and satisfies the relation 

n+r 

2 [t] = 
z 

hi [t] s’i’[t] 

i=l 

n+1 

c 
hi[t]=l, &[t]>O for tE[t,.6] 

i=l 

di) [t] = limz~’ [t] 
k-ma 

&‘[t] =X[t; t*]x[t*] + iX(t; T]C(V(Z, uf’[z]))u;)[t]dz 
t. 



a12 L. A. Plakhina and V. N. LJ:hakov 

Here the vector function u k\i) [%I considered on 1 t,, S] belongs to the set @ [ t, , 
p It,]] of all functions 1~ [r] (r .:: It,, Sl) satisfying the inequality 

8 

\~Urt]/V<&‘[I_ ]* i. zi: :-= (.,,]f*], @It*]} 

We shall call the kt {z IS]: z IS] = t [6; t,; z*, v] } the region of attainability 

G (t,, z,; 6, V) in the space 5 for the motions z [tl = 2 [t; t,, z*; V] from the 
position {t, , z* } at the instant 6. 

We denote by M, the closed Euclidean e-neighborhood of the set M , and by &a = 

e. (t,, z*; 6) the lower bound of the values E > 0 for which at least one motion 

5 ItI = 5 It; t,, z,; VI attains M,, at the instant 19 irrespective of the choice of the 
admissible countercontrol Y (t, U) . Let G = G (t.+, z*; 9; V) be the region of attain- 

ability , the distance of which from the set M is &o (t, , z, ; 6). The region of attain- 

ability G intersects the set M, if and only if the closed (-ML) neighborhood of the 
region G contains the point x = 0. The region Gt_M,j is composed of all vectors 

q = g + k - h where g E G (t*, z*; 6; V), h E M and // k II< e. The bounded 
closed convex set Gt-M,j represents the intersection of all its reference half-spaces (g* 
is the limit element of G) 

l’g* > min,l’q a 
I. 

q=s[+J+k- h = X [6; t, J z* + \I X [6; z] w (x] dr + k 

where n+1 lit 

w [z] = 
z 

hj [z] W(j) [z], z E [t*, 81 

j=l 
n+1 

2_ 
1A hj [IT] = 1, hj[rJ>O, i=I,2, . . . . n+l 

w(j) [TI is a wearz’imit on It,, IYJ of a certain sequence of functions 

{C (V (z, z+(j) [zl)) u&i) hl} 

where z+(j) [T] E Q, [t,, p [t,]]. 
From the previous arguments it follows that 

(2.1) 

h 

(2.2) 

(2.3) 

e. (t, , z* ; 6) = sup SUPV min l’q = 
11~11=1 QEG(1,, 2,; 8; V) 

min 
wr I= p(v) 

I (t*) - Z’X[6; t, J z* - max Z’h) 
hEM 

a 

I (t*) = s Z’X [6; t] w [t] dt 
t* 

where F (V) is a set of functions {w 1. I } satisfying the relations (2.2) and (2.3) on 

the interval It,, fJ] ; w I -1 denotes the function w [T] considered on the interval 

It,, 61. 
We shall show that the upper limit 

SUPV min I(&) 
wr.%EF(v) (2.4) 

can be attained for each fixed value of the vector 1 , on some admissible function 
Vl (t, u). We first define the set 
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v[* (t, 24) = (0,: 77, E [--a, +al, 1’X 16; t1c (UJU = 

~~+a,z’x k3: t1c (v)u} 

The set VI* (t, u) is bounded closed and upper semicontinuous relative to inclusion 

with respect to the variables t, U , for every value of the vector I , This implies that 

there exists a single-valued Bore1 function VI (t, U) satisfying inclusion VI (t, U) E 

Vl* (6 U). This function belongs to the class of admissible countercontrols V (t, u). 
We note that the function VI (t, U) can be defined by the relations 

1 

a, $1 (t, IL) E [-- fi, - u] 

Ir,(& U)= -a, $1 (t, u) E [+ a, f nl 

-sl(t, u), %(f, U)E[--9 +a1 

Here $1 (t, U) denotes the angle between the vectors (1’X 16; t]}* and U; {I’X 16; 
t]}* is the projection of the vector 1’X [6; tl on the (z,_~, 33 coordinate space, 

and the angles 91 (t, U) are counted from the vector { Z'X 16; tl } *. 
The definition of the admissible countercontrol V1 (t, U) implies that the following 

relations hold: 8 

inf s Z’X [6; t] C(V[ (t, u [t])) u [t] dt > 
M’l t, 

a 

inf s Z’X [6; t] C(V(t, u [t])) u [t] dt 
UC.1 t, 

u l-1 E CD [t,, p It*11 
or 

min I(&) > min I (t*) 
Wi*]EF(Vl) u'[. ]EF(V) 

Let WI [t] be a function belonging to F (v,) and satisfying the equation 
8 

II (t*) = min 
w[.ldWl) 

I (t*), I, (t*) = 5 rx 16; t] WI [tl dl 
L 

From the last two relations it follows that the inequality is valid irrespective of the char- 

acter of the admissible countercontrol Vl (t, u), therefore 

II (t*) > min I(t,) 
w[*lEFU’) 

i.e. the upper bound (2.4) is attained on the admissible countercontrol VI (t, u). Taking 

into account the equation 
12 (t*) = --cos 01 p. lt*lR (t*) 

j=l 

we find that e, = E,, (t*, z* ; 6) is given by the equation 

e,= max(-cosap[t,]R(t,)+1’X[6; &jr,-m&l’h) 
11111=1 

(2.5) 
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when the right-hand side of (2.5) is nonnegative, ,otherwise go (t, , z*; 6) = 0.. When 
~~ > 0 , the maximum in the right-hand side of (2.5) is attained on a unique vector 
I”, since the ~nimiz~g quantity taken with the opposite sign is a function convex with 

respect to the variable 1. We have the regular case. As the result, we find that a region 
G (t,, z,; 6; V~O) ‘exists which touches the E ,-neighborhood of the set M. Let go = 
z IS; t,, z*; Vpl be the point of contact between the region G (t*, z*; 6; VIO) and 
MS,. It follows that the motion z [ t; t,, Z* ; Vlo] which arrives at this point at the 
instant 6 will be optimal, and the control ZDO I tl E I; ( Vlo) generating this motion will 
satisfy the condition of the maximum principle 

a a 

s * P’X [@; tj 2~3” [ti dt = min (2.6) 
t, 

1 
w[.IEF(V) t 

Px is; t] w [t] dt 
* 

tit us define the strategy U, (t* ? .z*) (t, < 29) as fouows: 

U&*, z*) = w If*1 = 
up It*1 !I 

// il ‘“210 it*1 
(2.7) 

R” (t*) = (s IZ:,, (t) + 2;: (t)] dt)‘ft 
t* 

k=n--l,n 

for the case E. ft.+, z*; 6) > 0 . Here 1” = t” (8, , z*) is given by the expression 

- cosa p [&I R*(t,) + 1”‘X IS; &lx* - maxI”‘k = e,(t,, z*; 6) 
GM 

ue (t*, z*) = PI in the case when x < p* < 0, (x < 0) or e, (t,, z*; 6) < 0, 
and 

UP, C&l z*) = co (0 u u*: u* = lim c’, (t&, IQ), ,‘it (tk, zk) = 

(t,, z*), 80 itA, zk; 3) > 0 fLTk = 1, 2, . . .} 

-L 

inthecasewhen pt* >Oand e,,(t*, z,; 6) = 0. 
We can see that U, (t,, z.J is admissible by virtue of the inequality (1.4), and of 

the semicontinuity. 
When the value of 6 is fixed, the quantity en in the region e. (t, z; 8) > 0 is a 

differentiable function of the variables t and 2, and its partial derivatives are given 
by the equalities 

s[t]’ = I”X [6; tJ, 2 = Si It], 45 It]/dt = - A' (t) s [t] 
1 

The derivatives of Eg can be calculated according to the scheme {ree Cl]). The follow- 
ing relation also holds: 

max,[tl 
de,(t, 2 [rl; 6) - _ 

,_,= mlnc maqt] 
de,& 2 It]; 6) 

dt dt 
= 0 (2.8) 

V 
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Theorem. The extremal strategy U, (t, 2) (2.7) of the first player guarantees 
to the first player the value of the payoff p fs IN; Ml at the instant 6 ‘, equal to 
a, (to, z It,]; +t) = minup*g (to, z [to]; a), provided that the initial position of the 
game to, z [ toI from which the game begins is such that $0 (to, z [to]; I!$) > 0 s 
and equal to zero when a, (to, z [to]; I!!) < 0. 

Proof. The first case of &o (t o, z [to]; 6) > 0 is trivial. Let us consider the se- 
cond case when e, (t o, z [toI; I?) < 0. Assume the opposite: let there exist z[~]u, 
such that p[Z[@]Q Ml>0 ~Z~~l~,={~l~l~rp~Lal~l~U~~~’ 

We introouce me function e (t) = a0 (t, z [t]o ; 6), e (6) > 0. Then there exists 
t, < 6 and a small A (0 < A < 9 - t.+) for which E (t*) = 0, E (t) > 0 
for all t E (ta, t, + AL\]. The following formula holds: 

+,+A)=e&)+ \ $$hk, tke(t*, t*+A] (2.9) 

Here {tk} converges to t,. Since the function E (t) is continuous on [ $, t, + A] t 
we have 

13 (tk) -+ 8 (t*) = 0, k-roe (2.10) 

The inequality &a (a)/& \< 0 holds on every interval itk, t, $ Al by virtue of 
the relations (2. S), co~quently we obtain 

(2.11) 

The relations (2.9) - (2.11) yield the inequality a (t* -I- A) < 0 which contradicts 
the condition of the theorem, and this completes the proof. 

The strategy V, (t, z) realizes for the first player a result which coincides with the 

value a, (to, z I toI; 6) > 0 and is optimal for the program constructed, therefore 
this strategy is the optimal minimax strategy, 

8, Let us consider an example. A material point A of mass m moves in a three- 
dimensional Euclidean space RS along a circular orbft PO around the Earth. A material 
point B of mass m is guided into a ~f~c~n~y small neig~orh~ of the point A , at 
the instant to ‘ We assume that the motion of the point B in the space R3 of vectors 
Y = {YI, y2, ys}is described. by the following vector differential equation: 

my” = fi? (Y) + c (4 2J (3.1) 

Here l’g (y) is the force of attraction exerted on the point B in position Y = {yr, y2, YS) 

by the Earth the center 0 of which coincides with the origin of the Ylr Ys, ‘~g coordi- 
nate system, v E [- a, + al is the interference which we shall regard as the control 
of the second player, and u denotes the two-dimensional control vector of the first play- 
er. We note that the control of the first player is subject to the integral constraint, des- 
cribed in Sect. 1 and equal to P [to]. 

Our aim is to choose a control u which would ensure that the points A and B coin- 
cide within the period T of revolution of the point A about the Earth. Taking into 
account the fact that the orbit To lies in the ( yl, y3 )-plane, we introduce the following 
generalized coordinates of the point B which characterize the deviation of the point 
B from A : zl = II yB II - II Y ~11: zs is the angle between the projections yp* and Yg * 
of the vectors YA and Yn on the (Yl, Ya)-plane,and zs = Y2B - ?-!2A* Here YA = {YIAI 
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Yz~t YSA} and y ,3 = (yIB, yzs, ?lSB} are the vectors defining the positions of the points 

A and B in the space R”. 

Fig. 1 

‘i 

Fig. 2 

We take the six-dimensional vector 1: = {zIr 
. 

q, = Xl, %* x4= xfj , 25, x4 = xg '1 as 

the phase vector of the point B . Then Eq. (3.1) of motion of B reduces, in the linear 

approximation,to the following system of differential equations: 

2.1 = x.2, 22’ = 3fi2xI + 2pR,,x4, 2~. = x4 (3.2) 
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x4’ = - 
2s R,x~+ mHo U~COSV -ussinv) -& 

26 * =I 4% % *=-px6+ $ (u,sin v + u2 cos v) 

where M, is the mass of the Earth, vo is the gravitational constant, and Y* is the orbital 
velocity. In solving the problem, we assumed that T = 6 - t,, = 552Osec, and m = 

200 kg. 

The problem was solved as follows: the quantity p (to] was chosen so that e. (to, 

z [to]; 6) = O.The interval [to, 01 was divided into equal segments ]ti, ti+r] and the 
control of the first player was computed for each instant ti using the formulas (2.3) 
where the vector 1’ was given by (2.4). 

For the set of initial data 

to = 0 set, 2, [to] = xs [to] = z5 [to] = to4 m, a2 [to1 = za[tol = 0 m/set, 

2, [to] = - 1 m/set, u = 45O 

the results obtained were as follows: 

zr [t3] = --13~10-2 m, z2 if31 = -45*10-4 m/set, 5s [6] = -5.7 m 

2, Ictl = -29.10+ m/set, 2s I61 = 1.2 m. zB [O] = --87.10~’ m/set 

We note that the quantity x9 was converted from radians to meters. 
Figure 2 depicts the realization of the components xi (i = 1 ,. . ., 6) of the phase 

vector of the system (3.2) for the initial conditions given above. 

The authors thank N. N. Krasovskii and A, I. Subbotin for formulation of the problem 
and valuable advice. 
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